
Chemistry 60641 Spring 2025
Professor J. Daniel Gezelter Due Wednesday, April 30, 2025

Problem Set 5

This problem set includes four “difficult” problems (5, 6, 7, and 8) that will require
some use of a computer. You must do one of these three problems (in addition to the other
4). My recommendation is that only people who have experience running liquid simula-
tions should attempt problem 7. You should combine your efforts with other students on the
“difficult” problems but you must acknowledge the contributions of your collaborators.
The work on the difficult problems may be turned in separately as a group effort.

1. The trace of a square matrix G is defined as the sum of diagonal elements of the
matrix:

Tr G ≡
∑
i

[G]ii (1)

Consider further a matrix G whose eigenvectors and eigenvalues are g⃗i and λi re-
spectively. That is,

Gg⃗i = λig⃗i (2)

a) First, show that for two arbitrary square matrices A and B,

Tr (AB) = Tr (BA)

and deduce from this that

Tr (CAC−1) = Tr (A)

when C is invertible.

b) Prove that
Tr G =

∑
i

λi (3)

2. Now that you are an expert on the trace, consider the spin-spin correlation function
for the 1-d Ising Model:

⟨σlσn⟩ =
1

Q
Tr
[
σlσn exp

(
βJ

N∑
i=1

σiσi+1 + βH
N∑
i=1

σi

)]

a) Use the transfer matrix method to show that

⟨σlσn⟩ =
1

Q
Tr
[
PN−(l−n)

[
1 0
0 −1

]
Pl−n

[
1 0
0 −1

]]
1



b) Show that the internal energy of a 1-d Ising model is:

⟨E⟩
N

= −J⟨σ1σ2⟩ −Hm

where m is the average magnetization per spin.

3. In the mean-field theory for the Ising model, we can make the approximation

2dJ⟨σ⟩ = kT tanh−1⟨σ⟩

(we did the inverse of this in class). Although there is no analytical solution for this
equation, you can solve it numerically. Plot the spin density (i.e. the magnetization)
as a function of temperature. Explain physically what is happening to the limiting
behavior of the curve as the temperature becomes large.
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4. Quantum Cellular Automata: An area of research in some departments at Notre
Dame is a logic device built out of coupled molecular parts that can take on logic-
like states. In our model of a QCA device, we will use the following picture:

+

+

+

+

+

+

+
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Driver Cell
d

d

n=1 n=2 n=3 .....

Each cell has one excess electron that can move relatively easily between a pair of
metal atoms. There is a single “driver” cell on the left side of the chip that we can
force into the “+” state, i.e. the electron is on the upper metal atom. Since we now
are experts at the Ising model, we will denote the state of the ith cell as Si. This
variable tells us where the electron is in that cell. In the above diagram, we have
S1 = −1 and S2 = +1.

a) Use basic electrostatics to show that the energy between the m and n cells may
be written

Emn =
q2

8πϵ0d

 1√
(m− n)2

+
1√

(m− n)2 + 1


+

q2

8πϵ0d

 1√
(m− n)2

− 1√
(m− n)2 + 1

SmSn

b) Write out the full Hamiltonian for a chain of N cells in a line to the right of the
driver cell. Identify constants that could be replaced by a site-dependent field
Hn and coupling Jn,n′ .

c) Solve for the partition function in the nearest neighbor approximation.

d) Derive ⟨SN⟩, which is the average magnetization of the N th spin. Note that
this is not the same as the average magnetization of the lattice.

e) Plot the ⟨SN⟩ as a function of temperature when N = 10, N = 100, and N =
1000. You may assume d = 7.5Å to perform this calculation.

f) If d = 20Å, what temperature range would we be able to run our device at and
still have a well-defined logic state in cell 1000?
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5. Monte Carlo simulation of 2-D Ising Model: For this problem you will write a Monte
Carlo problem for the two dimensional Ising model on a cubic lattice L × L (total
number of spins is N = L2). Working in small groups (2− 3 people) is encouraged.
You may use parts of the code published in text books (Chandler or Binder and
Heermann) or that you find online. If you need copies of an Ising code to get started,
I can supply them in a few different languages (python, fortran, Java, JavaScript).
The goal of this problem is to gain an understanding of the Ising model’s phase
behavior and also to enhance your computational skills.

(a) Show that your random number generator is reliable. That is, does it yield
independent, identically distributed random variables, uniformly distributed
in the interval [0, 1]?

(b) Write a code for the 2 dimensional Ising model, with H = 0. Explain briefly the
Monte Carlo method. Explain the main ideas of the code, the clever ideas that
save computation time, etc. Discuss briefly the expected effects of boundary
conditions. What boundary conditions did you choose?

(c) Obtain a Monte Carlo “trajectory” of the average spin

S(t) =
∑
i

σi(t)

N
,

where the summation is over all spins in system and t is a particular “step” in
the Monte Carlo simulation. For three representative temperatures, plot S(t)
as a function of time. Explain the physical behavior of your observations. This
exercise will help you estimate the typical number of Monte Carlo cycles (t) for
equilibrium to be reached. For periodic boundary conditions, a 20 × 20 Ising
system is sufficient.

(d) For systems of length L = 10, 20, 50, 100, 1000 determine the magnetization
⟨|ML|⟩ and susceptibility χL, as a function of temperature (for periodic bound-
ary conditions, work in the range 0.5 < T/Tc < 1.7). Plot ⟨|ML|⟩ versus T/Tc

for different system sizes L on a single plot (and similarly for χL). Remarks:
(i) obtain χL from fluctuation of magnetization, and briefly explain its physical
meaning (ii) for convenience use Onsager’s Tc.

(e) Use finite size scaling to determine the critical temperature Tc in the limit L →
∞ and the critical exponent β defined by ⟨|ML|⟩ ∼ |T − Tc|β . Compare with
Onsager’s solution.

(f) Calculate the correlation function

⟨σiσj⟩ − ⟨σi⟩⟨σj⟩

for various spin separations and temperatures. Explain your observations. For
further details see Chandler 6.10.
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(g) Summarize briefly Chandler’s umbrella sampling technique. Solve 6.16.

(h) Extra Credit: Consider a single spin trajectory σ1(t) as a function of Monte
Carlo cycle. This individual spin will flip at random times between state +1
and −1 and vice versa. Obtain the distribution (histogram) of cycles (or time)
between flipping events. Start with T > Tc and attempt to approach Tc from
above. Explain your observations. What happens when T < Tc?
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6. Eran Rabani, David Reichman, Phillip Geissler and Lou Brus have worked on the
self-assembly of nanoparticles in two dimensions and found that self-assembly is
mediated by solvent drying. This work can be found in Nature 426, pp. 271 - 274 (20
November 2003).

Their work uses a lattice-gas model in which lattice sites may be empty, or they may
contain solvent, or they may contain nanoparticles (which can be larger than the
individual lattice sites). In the limit that the nanoparticles are exactly the same size
as the lattice sites, this becomes a three state (Potts model), where ρn can take values
of 1 (nanoparticle), 0 (empty), or -1 (solvent).

a) Construct the nearest-neighbor Potts Hamiltonian and go as far as you can to-
wards solving it analytically in one dimension. You may find the transfer ma-
trix formalism we used in class for the Ising to be helpful, and you may assume
that there is a single coupling constant J which is positive when solvent and
nanoparticles occupy neighboring lattice sites, but is negative when solvent is
adjacent to solvent or nanoparticles are adjacent to nanoparticles.

b) Perform a Monte Carlo simulation for the 1-D Potts model and find the phase
behavior when the number of nanoparticles is constant, but the number of sol-
vent molecules is gradually reduced.
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7. To do this problem, you will need to procure or write your own Lennard-Jones
molecular dynamics program for simulating a simple fluid. You will use this pro-
gram to generate a time series of configurations of the liquid. From this set of saved
configurations, you will compute the pair distribution function, g(r), and the veloc-
ity autocorrelation function, ⟨v(t)v(0)⟩, for a number of different temperatures and
densities. Do not go it alone! Work together or come talk to me to help get you
started.

(a) The direct correlation function, c(r) represents the direct correlation between
two particles in a system containing N−2 other particles. This direct correlation
function can be expressed as:

c(r) = g(r)− gindirect(r)

where g(r) is the standard radial distribution function.
We can postulate the existence of a potential of mean force w(r) for a simple
liquid that approximates the interactions with all of the other atoms in the liq-
uid:

g(r) = e−βw(r)

and the differences between the potential of mean force and the pair potential,
v(r) result in the indirect contributions to the liquid’s structure:

gindirect(r) = e−β[w(r)−v(r)]

It is also convenient to introduce one last function,

y(r) = eβv(r)g(r)

a) Prove analytically that c(r) = f(r)y(r). What is f(r)?
b) Plot all of the functions mentioned above for the Lennard-Jones fluid at the

following (T ∗, ρ∗) points: (1.5, 0.85) (1.5, 0.94), (1.3, 1.0)
c) Under which conditions would it be reasonable to approximate the poten-

tial of mean force by the pair potential?
d) If we approximate the potential of mean force by the pair potential what is

the relationship between the direct correlation function and g(r)?

(b) Plot the normalized velocity autocorrelation function, ⟨v(t)v(0)⟩/⟨v2⟩ for each
of those same state points: (T ∗, ρ∗) = (1.5, 0.85), (1.5, 0.94), and (1.3, 1.0). You
will almost certainly need to write a program to do this calculation.

(c) Compute the Fourier transform of the symmetrized velocity autocorrelation
functions to find the power spectrum for the Lennard-Jones fluid in these con-
ditions.
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8. Consider the following double-well potential model for chemical reactions,

V (x) =
1

4
bx4 − 1

2
ax2 (4)

where a and b are positive constants.

(a) In the reactant well, we can approximate the potential as:

Vr(x) ≈ Vr(x0) +
1

2
mω2

0(x− x0)
2. (5)

Find x0 and ω0 for the potential given in Eq. (4). m is the mass of the particle
that is crossing the barrier.

(b) In classical transition state theory, the rate of reaction is given by

kTST =
ω0

2π
e−β∆Vcl (6)

where ∆Vcl is the difference in energy between the bottom of the reactant well
and the top of the barrier. Find an analytic expression for the kTST for the
potential in Eq. (4) in terms of a, b, m, and T .

(c) Write a program which performs a Langevin simulation on a particle that starts
at the transition state (x = 0) with an initial velocity (ẋ(0)) chosen randomly
from a Maxwell-Boltzmann distribution. Use the absolute value function to
insure that the particle is moving towards the reactant (x > 0) side when the
simulation starts. Remember that the Langevin equation with static friction is

mẍ = −∂V

∂x
− ξẋ(t) +R(t) (7)

and the second fluctuation dissipation theorem tells us that ξ = β⟨R2⟩. That is,
for a given friction and temperature, we also know the second moment for the
distribution of the gaussian random force.

(d) The classical rate can be obtained from the reactive flux time correlation func-
tion,

kcl =
1

xR

⟨ẋ(0)δ[x∗ − x(0)]hp[x(tplateau)]⟩ (8)

Your simulation program takes care of the delta function by starting the trajec-
tories from the transition state (x(0) = 0), and takes care of the thermal aver-
age by using a Maxwell-Boltzmann distribution of initial velocities (ẋ(0). To
compute the reactive flux correlation function, you just need to accumulate
velocity-weighted statistics on the fraction of trajectories that are on the prod-
uct side (x > 0) in a particular time t. This weighted fraction will eventually
stabilize or plateau, and the classical rate constant is the value this correlation
function reaches after the plateau time. (xR is the equilibrium mole fraction of
the reactant.)
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(e) Transition state theory is not an exact theory, so the classical rate is often related
to the TST rate by a scaling factor,

kcl = κkTST (9)

Plot κ as a function of solvent friction. Can you explain the behavior at low
values of ξ? What’s going on with the high values of ξ?
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