Problem Set 4

1. Compute K_{p}, the pressure-based equilibrium constant for the dissocation reaction of O_{2} at $T=3000 \mathrm{~K}$. The electronic ground-state degeneracy for oxygen atoms, $g_{0}(O)=9$, while for oxygen molecules, $g_{0}\left(O_{2}\right)=3$.
2. Do problem 9-1 in McQuarrie's Statistical Mechanics book.
3. Using the translational partition function and the partition functions for harmonic oscillators and rigid rotators, do problem 9-9 in McQuarrie's Statistical Mechanics book.
4. Consider the reaction given by:

$$
H_{2}(g)+D_{2}(g) \leftrightarrow 2 H D(g)
$$

Using molecular parameters (see table 6-1 in McQuarrie), show that the equilibrium constant for this reaction has a temperature dependence of roughly:

$$
K(T)=4.24 e^{-77.7 K / T}
$$

5. Heat capacities of liquids
a) C_{V} for liquid argon (at $T=100 \mathrm{~K}$) is $18.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. How much of this heat capacity can you rationalize on the basis of your knowledge of gases?
b) C_{V} for liquid water at $T=10^{\circ} \mathrm{C}$ is about $75 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Assuming water has three vibrations, how much of this heat capacity can you rationalize on the basis of gases? What is responsible for the rest?
6. For the nearest-neighbor Ising model,

$$
\mathcal{H}=-H \sum_{n} \sigma_{n}-\frac{J}{2} \sum_{n, n^{\prime}}^{N . N .} \sigma_{n} \sigma_{n^{\prime}}
$$

with external magnetic field $(H \neq 0)$, determine the zero-temperature states as a function of J and H. Present the results on a H-J zero-temperature diagram marking clearly which states are favored in the various regions of the diagram.
7. For the one-dimensional Ising model, plot the average energy (actually $E / N J$), the magnetic susceptibility, and the specific heat all against $k T / J$ between values of 0 and 5. Discuss the specific heat maximum at around $k T / J=1$.

8. Extra credit: Maximum Entropy in Las Vegas

You play a slot machine in Las Vegas. For every $\$ 1$ coin you insert there are three outcomes:
a) you lose $\$ 1$.
b) you win $\$ 1$, so your profit is $\$ 0$.
c) you win $\$ 5$, so your profit is $\$ 4$.

Suppose you find that your average expected profit over many trials is $\$ 0$ (i.e. you play slots at a casino owned by someone exceedingly generous or stupid). Find the maximum entropy distribution for the probabilities p_{1}, p_{2} and p_{3} of observing each of these three outcomes.

