Problem Set 2

1. Consider the Gaussian probability density $P(x)$ for the continuous variable x,

$$
P(x) d x=A e^{-a\left(x-x_{0}\right)^{2}} d x
$$

Determine the normalization constant A.
2. Using $P(x)$ from the previous problem, compute $\langle x\rangle,\left\langle x^{2}\right\rangle$, and σ_{x}
3. Do the same operations as in problems 1 and 2, but for the Exponential distribution,

$$
p(x) d x=c e^{-\lambda x} d x, \quad x \geq 0
$$

4. Compute the quantity $\left\langle(x-\langle x\rangle)^{4}\right\rangle$ for both the normalized Gaussian distribution and the normalized Exponential distribution. Use this quantity to evaluate the nonGaussian parameter for both distributions:

$$
\alpha_{2}=\frac{\left\langle(x-\langle x\rangle)^{4}\right\rangle}{5\left\langle(x-\langle x\rangle)^{2}\right\rangle^{2}}-\frac{3}{5}
$$

5. According to the kinetic theory of gases, the energies of molecules moving along the x-direction are given by $\epsilon_{x}=m v_{x}^{2} / 2$ where m is the mass of the molecule and v_{x} is the velocity in the x-direction. The distribution of particles with a given velocity is given by the Boltzmann law,

$$
p\left(v_{x}\right)=e^{-m v_{x}^{2} / 2 k_{B} T}
$$

(This is sometimes called the Maxwell-Boltzmann distribution). Given that velocities can range from $-\infty$ to ∞,
a) Write the probability distribution $p\left(v_{x}\right)$ so that it is correctly normalized,
b) Compute the average energy, $\left\langle m v_{x}^{2} / 2\right\rangle$,
c) Find the average velocity $\left\langle v_{x}\right\rangle$, and
d) Find the average momentum $\left\langle m v_{x}\right\rangle$.
6. A biological membrane contains N ion-channel proteins. The fraction of time that any one protein is open to allow ions to flow through is q. Express the probability $P(m, N)$ that m of the channels will be open at any given time.
7. The relative populations (a_{1} and a_{2}) of two states (1 and 2) can be expressed as a function of the energies of the two states:

$$
\frac{a_{1}}{a_{2}}=f\left(E_{1}, E_{2}\right)
$$

Since the zero of the energy scale is always an arbitrary fixed value, this function must depend only on the difference in energies between the two states:

$$
f\left(E_{1}, E_{2}\right)=f\left(E_{1}-E_{2}\right)
$$

If we consider a third state and use the same ideas, we have:

$$
\frac{a_{3}}{a_{2}}=f\left(E_{2}-E_{3}\right), \text { and } \quad \frac{a_{3}}{a_{1}}=f\left(E_{1}-E_{3}\right)
$$

while the ratio of populations must agree:

$$
\frac{a_{3}}{a_{1}}=\frac{a_{2}}{a_{1}} \cdot \frac{a_{3}}{a_{2}}
$$

a) Prove that the unknown function f must satisfy

$$
f(x+y)=f(x) f(y)
$$

b) Use the result of part a) to prove that the following is true:

$$
\frac{d \ln f(x)}{d x}=\frac{d \ln f(y)}{d y}
$$

c) For this relation to be true for all values of x and all values of y, each side must equal a constant, c. Prove that:

$$
\begin{aligned}
& f(x) \propto e^{c x} \\
& f(y) \propto e^{c y}
\end{aligned}
$$

8. A statistical mechanics puzzle: Consider the Maxwell-Boltzmann distribution of velocities in 1-D,

$$
p\left(v_{x}\right)=e^{-m v_{x}^{2} / 2 k_{B} T}
$$

In problem 5, you computed the average energy, $\left\langle m v_{x}^{2} / 2\right\rangle$, using the normalized version of this distribution. Now, consider the Boltzmann distribution of energies,

$$
p(E)=e^{-E / k_{B} T}
$$

If we compute the average energy, $\langle E\rangle$, by integrating over the proper domain in energies $(0, \infty)$, with a normalized distribution, we get a different answer. Why does this happen?
9. Extra credit: The Central Limit Theorem
a) Write a simple computer program (in whatever language you'd like) which generates the sum

$$
X_{N}=\sum_{i=1}^{N} \frac{x_{i}}{\sqrt{N}}
$$

where $\left\{x_{1}, \ldots, x_{i}, \ldots x_{N}\right\}$ are independent random numbers which are uniformly distributed on the interval $-1 / 2<x_{i}<1 / 2$. Your program should compute X_{N} at least one million times and then construct a histogram of the X_{N} values you observe.
b) What are the maximum and minimum possible values for X_{N} ?
c) Show (numerically) that for large N the distribution of X_{N} values looks Gaussian.
d) Where does the Gaussian approximation work best? Where does it fail?

