Problem Set 5
(Mostly harmonic oscillator)

1. Do problem 5-7 in McQuarrie and Simon.
2. Do problem 5-8 in McQuarrie and Simon.
3. Do problem 5-14 in McQuarrie and Simon.
4. A simple potential function which models many of the properties of diatomic molecules is the Morse potential,

$$
\begin{equation*}
V(x)=D_{e}\left(1-e^{-\beta x}\right)^{2} \tag{1}
\end{equation*}
$$

where x is the displacement of the bond from its equilibrium position and D_{e} is the value of $V(x)$ at large separations. Expand $V(x)$ in a Taylor series about $x=0$ to obtain

$$
\begin{equation*}
V(x)=D_{e} \beta^{2} x^{2}-D_{e} \beta^{3} x^{3}+\cdots \tag{2}
\end{equation*}
$$

Given that $D_{e}=7.31 \times 10^{-19} \mathbf{J} \cdot$ molecule ${ }^{-1}$ and $\beta=1.82 \times 10^{10} \mathrm{~m}^{-1}$ for HCl , calculate the force constant of HCl . Plot the Morse potential for HCl and plot the corresponding harmonic oscillator potential on the same graph. A computer will be helpful in making this graph.
Hint: See Example 5-2 in McQuarrie and Simon to get you started.
5. Do problem D-7 in McQuarrie and Simon.
6. Do problem D-9 in McQuarrie and Simon.

7. Extra Credit

Consider a harmonic oscillator that is operating under classical mechanics. The probability $(P(x) d x)$ of being found between x and $x+d x$ is proportional to $1 / v(x)$ where $v(x)$ is the velocity at point x. Suppose our classical harmonic oscillator is given the same total energy as the ground state of the quantum harmonic oscillator, $E=\hbar \omega / 2$.
a) Where are the classical turning points at this energy?
b) Use the fact that the kinetic energy is $E-V(x)$ to derive an expression for the velocity as a function of position $(v(x))$ that will work if we are between the classical turning points.
c) Use your expression for $v(x)$ to normalize the classical probability distribution $P(x)$ between the classical turning points.
d) Plot on the same graph, the potential energy, the classical probability distribution, and the quantum probability distribution, $\left|\psi_{0}(x)\right|^{2}$ for the harmonic oscillator. A computer will be helpful in making this graph.

