Problem Set 3
(Operators, Particles in Boxes)

1. Do problem 3-3 in McQuarrie and Simon.
2. Evaluate the operator \hat{A}^{2} for $\hat{A}=$
a) $\frac{\partial^{2}}{\partial x \partial y}$
b) $\frac{d^{2}}{d x^{2}}+x \frac{d}{d x}$
c) $\frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}$
$(\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are the unit vectors along the x, y, and z axes.)
(Hint: Be sure to include $f(x, y, z)$ before carrying out the operations.)
3. Determine whether or not the following pairs of operators commute, and be careful with partial vs. total derivatives!

$$
\begin{array}{cc}
\hat{\mathbf{A}} & \hat{\mathbf{B}} \\
\sqrt{ } & x \\
\frac{d^{2}}{d x^{2}} & \frac{d^{3}}{d x^{3}}+x \frac{d}{d x} \\
\frac{\partial}{\partial x} & \frac{\partial^{2}}{\partial y \partial z} \\
\frac{d}{d x} & \frac{d^{2}}{d x^{2}}+y \frac{d}{d x}
\end{array}
$$

4. Calculate the value of a that makes $e^{-a x^{2}}$ an eigenfunction of the operator $\hat{A}=\frac{d^{2}}{d x^{2}}-B x^{2}$, where B is a constant. What is the corresponding eigenvalue?
5. Do problem 3-9 in McQuarrie and Simon
6. Do problem 3-11 in McQuarrie and Simon
7. Do problem 3-13 in McQuarrie and Simon
