
In-class Practical 4
More advanced Mathematica topics

A reminder about lists

1. Remember that Mathematica uses lists to represent sequences. If we have the three (x, y)
points: (1, 2), (2, 3), and (3, 5), each of these points is represented as a list of two
numbers. The list of the three points is then a nested list, or a list of lists:  
 
{ {1, 2}, {2, 3}, {3, 5} }

2. To plot a graph of these three points, we use a new Mathematica command:  
 
ListPlot[{ {1, 2}, {2, 3}, {3, 5} } , PlotJoined -> True]  
 
This tells Mathematica to plot the list of points inside the square brackets. The spaces are
optional and are included here mainly for the sake of clarity.

Fitting data points to polynomial expressions

1. Suppose we have a set of experimental data that we want to fit with a straight line. For
specificity, imagine that we have measured absorbance as a function of concentration in a
test of the Beer-Lambert law:

 concentration (M) absorbance

 0.01 0.095
 0.02 0.202
 0.04 0.413
 0.06 0.629
 0.10 1.101
 0.15 1.735

First let's put this data into a list of (x, y) points:  
 
data = { {0.01, 0.095}, {0.02, 0.202}, {0.04, 0.413},  

{0.06, 0.629}, {0.10, 1.101}, {0.15, 1.735} } 
 
We can plot the data with  
 
ListPlot[data]  
 

Chemistry 20262 - Mathematical Methods Spring 2018
Professor J. Daniel Gezelter

from which we see that the data looks fairly linear at low concentrations, but starts to
curve upward as the concentration increases. (Well, it's actually a bit hard to see this, but
it will become more evident once we try to fit the data with a straight line.)

2. To fit the data to a straight line, type  
 
Fit[data, {1, conc}, {conc}]  
 
This tells Mathematica to fit the data in terms of two functions of the variable conc; these
functions are 1 and conc. You should get the result 
 
-0.044375 + 11.6875 conc  
 
from which we see that the slope and y-intercept of the line are 11.6875 and -0.044375,
respectively. (Note that Mathematica uses its default of six significant figures even
though our data has fewer significant figures.)  
 
The general form of the Fit command is: 
 
Fit[<data-list>, <function-list>, <variable-list>]  
 
The first argument is a list of (x, y) data points, in the standard Mathematica form of a
nested list. The second argument is a list of functions that Mathematica will use to try to
fit the points. The third argument is a list of the independent variables in the data set. In
this example, we have only one independent variable, so the variable list is a list with one
element: the variable conc. (Of course, we could name the independent variable anything
we want, as long as the same name appears in the list of functions and the list of
variables.) Later we'll see how we can fit data as a function of two or more independent
variables.

3. You might be asking yourself, “Why is there a 1 in the list of functions?” Let's try
leaving the 1 out:  
 
Fit[data, {conc}, {conc}]  
11.2461 conc  
 
Here we have instructed Mathematica to fit the data to a straight line that goes through
the origin. The 1 in the variable list is used to fit the y-intercept in our original example.
Think of the fit as finding the best constants A and B such that the data is described by
the line 
 
A * 1 + B * conc  
 
When we leave out the 1, we are telling Mathematica not to look for a constant term in
the fitting equation. This is equivalent to finding the best constant B such that the data is
described by the line  

 
B * conc  
 
with A implicitly set to zero.

4. In the example presented here, we might want to force the y-intercept to be zero; after
all, that is the sensible Beer-Lambert law prediction. But if our apparatus is dirty or
malfunctioning, it may register a "baseline" absorbance even when there is nothing in our
sample cell. This would show up as a constant error in the absorbance, independent of
concentration. So the fit to the line  
 
A * 1 + B * conc  
 
lets us estimate this error. Notice that the slopes of the two straight lines are slightly
different.

5. As mentioned above, the Beer-Lambert law can break down at high concentrations. Let's
add a quadratic term to our fitting equation to see if the data is described better that way:  
 
linfit = Fit[data, {1, conc}, {conc}]  
-0.044375 + 11.6875 conc  
quadfit = Fit[data, {1, conc, conc^2}, {conc}]  
-0.00325599 + 9.91865 conc + 11.1374 conc^2 
 
Now let's plot both fits, along with the experimental data:  
 
points = ListPlot[data]  
curve1 = Plot[linfit, {conc, 0, 0.15}]  
curve2 = Plot[quadfit, {conc, 0, 0.15}]  
Show[points, curve1]  
Show[points, curve2]  
 
We see that the quadratic curve does seem to fit the data better. In addition, the quadratic
fit leads to a y-intercept which is much closer to zero, in accord with our intuition.

Contour and surface plots

1. Mathematica can make very nice contour and surface plots of three-dimensional
functions such as z = z(x, y). The commands that generate these plots are ContourPlot
and Plot3D for contour and surface plots, respectively.  
 
These commands have the same basic form, although there are more "options" for
Plot3D. To make a plot of some function of x and y in which x ranges from xmin to
xmax and y ranges from ymin to ymax, enter  
 
ContourPlot[<function>, {x, <xmin>, <xmax>},  

{y, <ymin>, <ymax>}]  

 
or  
 
Plot3D[<function>, {x, <xmin>, <xmax>},  

{y, <ymin>, <ymax>}]  
 
For example, a contour plot of the function e-(x^2 + 3 y^2) near the origin can be generated as
follows: 
 
ContourPlot[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2}] 
 
A three-dimensional surface plot of the same function is generated with the command  
 
Plot3D[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2}]  
 
Note that you can manipulate the three dimensional plots with your mouse to get a better
view of the function.

2. If you try these commands, you might find that the surface plot seems "chopped off" near
the origin. We can rectify this by including a larger range of z coordinates in the plot,
using the PlotRange option that we first saw in two-dimensional plots:  
 
Plot3D[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2},
PlotRange -> {0, 2}]  
 
This command tells Mathematica to include all parts of the function with z values
between 0 and 2. We can also use the PlotRange option to specify boundaries on all
three coordinates, for example to zoom into a portion of the surface:  
 
Plot3D[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2}]  
Show[%, PlotRange -> {{0, 1}, {0, 1}, {0, 2}}]

3. You might notice that the resolution in this "zoomed" plot is fairly poor. Mathematica
creates surface plots by scanning over a rectangular grid of points and calculating the
height of the surface at each point. When we zoom in, Mathematica continues to use the
original grid of points. We can make the grid finer by using the PlotPoints option in
Plot3D. (Note that this option does not work in the Show command!) Here is how we
might increase the resolution of this zoomed plot:  
 
Plot3D[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2},  

PlotPoints-> 30]  
Show[%, PlotRange -> {{0, 1}, {0, 1}, {0, 2}}] 
 
Of course, if you decided to zoom in after viewing a surface plot, you can combine the
PlotPoints and PlotRange options in the Plot3D command to do everything in one step:  
 

Plot3D[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2},  
PlotPoints-> 30,  
PlotRange -> {{0, 1}, {0, 1}, {0, 2}}] 

 
Even this is wasteful in a sense; we are generating a 30-by-30 grid of points in which x
and y both range from -2 to 2, and then throwing away all of the points except those
where x and y are between 0 and 1. Instead, we might try  
 
Plot3D[Exp[-(x^2 + 3 y^2)], {x, 0, 1}, {y, 0, 1},  

PlotPoints-> 30, PlotRange -> {0, 2}]  
 
which gives us higher resolution in the region of interest.

4. The PlotPoints option applies to contour plots as well. Compare these two plots:  
 
ContourPlot[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2}]  
ContourPlot[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2},  

PlotPoints -> 30]  
 
The plot with more points is much smoother, and represents the oval shape of the surface
more faithfully. But how can we get rid of the shades of gray, blue, and purple so that we
can see the contours better? Try  
 
ContourPlot[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2},  

PlotPoints -> 30, ContourShading -> False]  
 
Nice, isn't it? The only problem is that we don't know what z values the contour lines
correspond to. With the Contours option we can specify exactly where we want the
contours. Try entering  
 
ContourPlot[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2},  

PlotPoints -> 30, ContourShading -> False,  
Contours -> {0.2, 0.4, 0.6, 0.8},  
PlotRange -> {0, 2}]  

 
to see how you can control the placement of contour lines. Note that we need to include
both the Contours and the PlotRange options to make sure that all of the contour values
fit inside the range of z values that Mathematica will plot. Remember that when you only
give one pair of numbers for PlotRange, Mathematica applies this range to the z axis.

5. Finally, note that the variables x and y could be called anything we want. These two
commands produce exactly the same results:  
 
ContourPlot[Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2}]  
ContourPlot[Exp[-(u^2 + 3 v^2)], {u, -2, 2}, {v, -2, 2}]

Vectors & Matrices

1. Lets define 3x3 matrices A, B, and vector c. 
 
A = {{4, 0, 1}, {-2, 1, 0}, {-2, 0, 1}}  
B = {{0, 1, 1}, {-3, 1, 5}, {0, 0, 1}}  
c = {1, 2, 3}

2. We can look at these objects in Matrix Form:  
 
MatrixForm[A]  
MatrixForm[B]  
MatrixForm[c]

3. We can get the individual elements of the matrix using the [[]] notation, where A[[i,j]] is
the element Aij. Note that c has only one index.  
 
A[[1, 1]]  
4  
B[[3, 2]]  
0  
c[[3]]  
3

4. We can also define a n x n identity matrix:  
 
ii = IdentityMatrix[3]  
MatrixForm[ii]  

5. We can Transpose a matrix, and then show the result in MatrixForm:  
 
Transpose[A] // MatrixForm

6. We can multiply two matrices using the “.” operator. Note that A . B is another 3 x 3 matrix and
B . c is a 3 x 1 vector:  
 
A . B  
{{0, 4, 5}, {-3, -1, 3}, {0, -2, -1}}  
MatrixForm[%]  
 
MatrixForm[B . c]  

7. If we want to find the Eigenvalues of a matrix, we could set up the determinant:  
 
Det[A - lambda ii]  
 
but we really need to solve for lambda when this determinant is zero, so:  
 
Solve[Det[A - lambda ii] == 0, lambda]

8. A much simpler way to get eigenvalues and eigenvectors is the built-in commands in
Mathematica:  
 
eval = Eigenvalues[A]  
e1 = eval[[1]]  
e2 = eval[[2]]  
e3 = eval[[3]]

9. The Eigenvectors command returns all of the eigenvectors of the matrix as columns of a new
matrix: 
 
evec = Eigenvectors[A]  
v1 = evec[[1]]  
v2 = evec[[2]]  
v3 = evec[[3]]  

10. Now, we can verify that the eigenvectors all satisfy the eigenvalue equation A v = e v  
 
A . v1 == e1 v1  
A . v2 == e2 v2  
A . v3 == e3 v3

11. Since A has distinct eigenvalues, A is diagonalizable. If we now let P be the matrix whose
columns are the eigenvectors,  
 
P = Transpose[evec]  
Pinv = Inverse[P]  
 
then P-1 A P = D, where D is the diagonal matrix whose diagonal entries are the respective
eigenvalues. We verify this as follows:  
 
diag = Pinv . A . P  
MatrixForm[%]

Solving a linear system of n equations and n unknowns

1. Suppose we have a system of linear equations that we want to solve (don’t type these in):  
 
2x +y +z -2w = 1  
3x -2y +z -6w = -2  
 x -y +z +w = -1  
3x -y +2z -8w = 3  
 
We first enter the coefficient matrix A and the constant matrix b:  
 
A = {{2, 1, 1, -2}, {3,-2,1,-6}, {1, -1, 1, 1}, {3, -1, 2, -8}}  
b = {1, -2, -1, -3}

2. Next we can solve the linear system using an inverse:  
 

x = Inverse[A] . b  
 
or alternatively  
 
LinearSolve[A, b]

Problems (Due with Problem Set 9 on April 20):

Consider the linear CO2 model we were talking about in class. In terms of the atomic coordinates, the
total potential is given by:

�

Here, k is the force constant for both of the C=O bonds. When the potential is harmonic like this, the
equations of motion become much simpler, and can be arranged as a matrix equation. First, we define
displacement coordinates,

�

Newton’s equations of motion for the q coordinates are nearly the same as for the original coordinates:

�

Dividing by the masses, the matrix equation for the equations of motion are

�

where we define � or the mass ratio between oxygen and carbon. Solving for the eigenvectors
of the matrix will decouple the three variables. That is, if � is an eigenvector of this matrix with
associated eigenvalue � then,

�

This means we have three separate equations for � , and all of them have the same time
dependence:

V =
1
2

k (x2 − x1 − l0)2 +
1
2

k (x3 − x2 − l0)2

q1 = x1 + l0
q2 = x2

q3 = x3 − l0

mO
d2q1

dt2
= F1 = k (q2 − q1)

mC
d2q2

dt2
= F2 = k (q1 − 2q2 + q3)

mO
d2q3

dt2
= F3 = − k (q3 − q2)

d2

dt2

q1
q2
q3

=
k

mO

−1 1 0
γ −2γ γ
0 1 −1

q1
q2
q3

γ = mO /mC ⃗v 1
λ1

d2

dt2
⃗v 1 =

k
mO

−1 1 0
γ −2γ γ
0 1 −1

⋅ ⃗v 1 =
k

mO
λ1 ⃗v 1

v11, v12, v13

�

That was a big build up to the actual questions:

1. Find the general solution of the differential equation for � and leave it in terms of the
constants � , and the eigenvalue � . It may be useful to write � before doing
this.

2. Find the three eigenvectors � and the associated eigenvalues � for this matrix.
Do this symbolically in Mathematica (i.e. don’t plug in any numbers).

3. Given your answer to number 1, what do these three eigenvalues tell you about the motion of the
atoms in each of these three “modes” of motion?

4. Look at the eigenvectors for each of the modes. The elements of these vectors tell you how the
three atoms move as the motion described by that eigenvector progresses. Can you describe what
each of the eigenvectors will do to the molecule in each of these three modes?

5. If we freeze q2 in place at the origin, you can make a surface plot the potential energy in terms of
the atomic coordinates q1, and q3. You can set k = 1 arbitrarily, and let the coordinates range from
-5 to +5. What does a larger value of k do? Can you show this effect on your surface plot?

d2v11

dt2
=

k λ1

mO
v11

v11(t)
k , mO λ1 ω1 = −k λ1/mO

⃗v 1, ⃗v 2, ⃗v 3 λ1, λ2, λ3

