
Computational Exercise 3

In this example, we’ll run and analyze a molecular dynamics simulation of a simple liquid
(methanol) starting with a structure file (in XYZ format). Getting your molecule of choice into a
simulation program is never a black box procedure, and will almost always require some hand
adjustment of the input files.

Setting up a liquid simulation

1. Use Avogadro, build the methanol structure (CH3OH), set up the MMFF94 force field,
and optimize the structure. Save the structure as an XYZ file called: methanol.xyz.

2. Open a terminal, and copy your methanol structure over to your home directory on the
CRC machines: 
 
scp methanol.xyz user@newcell.crc.nd.edu:~/  
 
replace user with your own Notre Dame NetID.

3. Log in to the CRC machines and load the requisite modules. Some of these steps below
will take some time, so if you have access to another CRC front-end node, you might
want to use that instead of newcell:  
 
slogin user@newcell.crc.nd.edu -Y  
module load openmd  
module load xmgr  
module load vmd  
mkdir chem650  
mv methanol.xyz chem650  
cd chem650

4. Use the atom2omd program to convert the structure into a format that can be read by
OpenMD:  
 
atom2omd -ixyz methanol.xyz  
 
This command will create an incomplete OpenMD file called methanol.omd that must
be edited before it can be used.

5. OpenMD can use a number of force fields, but in this example, we’ll use the Amber force
field. If you are using this force field and are starting from an XYZ file or non-standard
PDB file, you must edit the atom types. In the methanol.omd file:

Chemistry (4|6)0650 - Computational
Chemistry

Spring 2017
Professor J. Daniel Gezelter Due Fri. 3/10/2017

http://en.wikipedia.org/wiki/XYZ_file_format
http://avogadro.openmolecules.net/

a. change the atom typing for the methyl carbon from C3 to CT

b. change the O3 to OH

c. All of the hydrogens on the carbon should be changed from HC to H1

d. The hydroxyl hydrogen (HO) should be changed to HO.

6. At this point it is also a good idea to change the name of the molecule from MolName0
to something descriptive (use “methanol”). This should be done in two places; once in
the molecule description and another time in the component block.

7. Before the simulation can run, add a forceField line after the component block:  
 
forceField = "Amber";  
 
At this stage, you should be able to run OpenMD on the file to check to make sure your
hand-crafted atom typing can be matched up with types known by the force field:  
 
openmd methanol.omd  
 
If there are any problems, correct any unknown atom types, and repeat until you get an
error about the “Integrator Factory”.

8. Next, we’ll build a lattice of methanol molecules using this initial structure as a starting
point. The density of liquid methanol is roughly 0.7918 g cm-3, so we’ll build a simple
box of methanol molecules using the command:  
 
simpleBuilder -o liquid.omd --density=0.7918 --nx=3 --ny=3 --nz=3 methanol.omd 
 
This command creates a new system, liquid.omd which contains 108 copies of the
methanol molecule arranged in a simple FCC lattice. FCC has 4 molecules in the unit
cell, so the total number of molecules = 4 * 3 * 3 * 3 = 108. The molecules are packed at
a distance commensurate with their liquid state density.

9. To visualize what the system looks like at this stage, you can run:  
 
Dump2XYZ -b —i liquid.omd  
 
to create a file called liquid.xyz. This file can be viewed in vmd, jmol, or any other
chemical structure viewer. The -b flag tells this program to convert all of the simulated
atom types (CT, OH, H1, HO) into the base types (C, O, H, H)

10. Add the following lines below the forceField line of the liquid.omd file. Be
careful to include all of the semicolons, as they terminate each line:  
 
ensemble = NVT;  
electrostaticSummationMethod = "shifted_force";  

http://jmol.sourceforge.net/

electrostaticScreeningMethod = "damped";  
cutoffRadius = 9;  
dampingAlpha = 0.2;  
targetTemp = 300;  
tauThermostat = 1000;  
dt = 1.0;  
runTime = 1e3;  
tempSet = "false";  
sampleTime = 100;  
statusTime = 10;  

11. Initial configurations that are created from bare structures typically have no velocity
information. To give an initial kick to the atoms (i.e. to sample the velocities from a
Maxwell-Boltzmann distribution), you can use the following command:  
 
thermalizer -o warm.omd -t 300 liquid.omd  
 
This creates a new OpenMD file called warm.omd which has initial velocity
information.

12. At this stage, a simple simulation can be run:  
 
openmd warm.omd

13. This should complete relatively quickly, and should create three new files:

• warm.stat (reports the status of the simulation as it progresses)

• warm.dump (contains the actual trajectory data)

• warm.eor (an “end-of-run” file that contains the single most recent stored
configuration)

• warm.report (an end-of-run statistical analysis of the trajectory)

14. To view the contents of the trajectory file, you’ll need to convert the dump file into
something another program can visualize:  
 
Dump2XYZ -b —i warm.dump  
 
will create a new file warm.xyz. To visualize the trajectory, you can use:  
 
vmd warm.xyz

15. The “End-of-Run” file, warm.eor can be re-purposed as the starting point for a new
simulation,  
 

cp warm.eor stable.omd  
 
Edit the stable.omd file, and change parameters you’d like to change before running
openmd on the new file.

Thermal relaxation, Equilibration, Data Collection

MD simulations should go through some very important stages before they are used for sampling
and data collection. Hand-made initial configurations are often far from equilibrium structures
and will need a substantial period of equilibration. If a simulation starts in a strained or overly
dense structure, there may be many stages required to equilibrate that structure. For example, we
will often perform a sequence like the following:  

�

This gives the structure a chance to relax and thermalize (under constant volume conditions)
before the box is allowed to change shape (under constant pressure conditions). After a
reasonable volume has been found for a particular pressure, the system is affine scaled to the new
box geometry, and allowed to relax thermally (under constant volume). It may be reasonable to
collect structural or configurational data in isobaric-isothermal (NPT) or canonical ensemble
(NVT) simulations. However, all data collection for time dependent quantities must be done in
the microcanonical (NVE) ensemble! It is impossible to stress this point enough. All methods
for sampling constant pressure or temperature introduce dynamical perturbations. If you care
about dynamical quantities, the only useful ensemble is the microcanonical ensemble.

In what follows, we will perform a (short) thermal relaxation, followed by equilibration and data
collection. At the end of these stages, we will analyze the trajectory to obtain both structural and
dynamical quantities for our liquid. Some of these stages will take a while, so if you have access
to other CRC front-end nodes, you might want to use those instead.

1. Edit your stable.omd file, and modify the following lines:  
 
tauThermostat = 100;  
runTime = 1.5e4;  
sampleTime = 1000;  
 
run the command: openmd stable.omd

2. When this simulation has completed, you can view the various quantities that were
tracked during the simulation:  
 
xmgrace -nxy stable.stat  
 

Structural
Relaxation
(NVT - 10 ps)

Pressure
Correction  
(NPT - 200 ps)

Thermal
Relaxation
(NVT - 100 ps)

Equilibration  
 
(NVE - 100 ps)

Data Collection  
 
(NVE - 1 ns)

Affine scale to
average volume

zoom in on the blue line (temperature) and observe that the temperature oscillates around
the target value (300) with a period controlled by the tauThermostat variable, but
eventually damps out to the target value. The other lines correspond to other status
variables:

• black: total energy (kcal mol-1)
• red: potential energy (kcal mol-1)
• green: kinetic energy (kcal mol-1)
• blue: temperature (K)
• yellow: pressure (atm)
• brown: volume (Å3)
• grey: conserved quantity (usually kcal mol-1)  

3. Copy the endpoint of the stabilization run into the starting point for an equilibration run:  
 
cp stable.eor equil.omd

4. Edit equil.omd, and change the following lines:  
 
ensemble = NVE;  
runTime = 2.5e4;  
 
run the command openmd equil.omd

5. When this simulation has completed, you can check the energy conservation using
xmgrace -nxy equil.stat Make sure that the total energy (black) and
conserved quantity (grey) lines have no drift, and are reasonably conserved during the
simulation. There should also be no obvious ringing in the temperature (blue) or pressure
(yellow) traces during the simulation.

6. Copy the endpoint of the equilibration run into the starting point for a collection run:  
 
cp equil.eor collection.omd

7. Edit collection.omd, and change the following lines:  
 
runTime = 2.5e5;  
sampleTime = 500;  
 
run the command openmd collection.omd

Analyzing the results: Structural features

1. First analyze the trajectory (dump) file to make a carbon-carbon pair correlation function,
gCC(r): 
 
StaticProps -i collection.dump -g --sele1="select CT"  
 --sele2="select CT"  

 
this command should be all on one line. View the gCC(r) function: 
 
xmgrace collection.gofr  

2. sele1 and sele2 are selection scripts that can be used to specify other pairs of objects
in the system. What does a gOO(r) look like? What about gOH(r)? Remember that there
are two types of Hydrogen you can query.

Analyzing the results: Dynamic properties

1. First, compute the mean squared displacement as a function of time,
�  
 
DynamicProps -i collection.dump -r --sele1="select methanol" 
 
View the R2(t) function: 
 
xmgrace collection.rcorr  

2. The Einstein expression for the diffusion constant is  

 
Find the diffusion constant for methanol by finding the best-fitting slope of the R2(t)
function and dividing by 6. Compare this to experimental values.

3. Compute the velocity autocorrelation function, � , 
 
DynamicProps -i collection.dump -v --sele1="select all"  
 
confirm that the data you have collected results in an undersampled (rough) velocity
autocorrelation function because the configurational sampling was too infrequent.

4. To refine the sampling time scale, copy collection.eor to fine.omd, and edit
the following lines:  
 
runTime = 1e4;  
sampleTime = 10;  
 
re-run openmd on the fine.omd file, and recompute the velocity autocorrelation
function. If your correlation functions are still rough, re-do the sampling at shorter time
scales until you get a smooth autocorrelation function.

R2(t) = �|�r(t) � �r(0)|2�

��v(t) · �v(0)�

D = lim
t��

1
6t
�|�r(t) � �r(0)|2�

Homework

1. Submit publication-ready figures of the following quantities:

a. pair correlation functions for all of the pairs of atom types present in the system.

b. mean-squared displacement.

c. velocity autocorrelation function.

2. Use Dump2XYZ, vmd, and your data collection trajectory to make a movie of liquid
methanol that you could show in a group meeting. Put this up on the web and email the
URL to Dr. Gezelter. You might find the -m flag for Dump2XYZ useful in keeping all of
the molecules in the central simulation box. In VMD, you can easily make movies using:
Extensions ! Visualization ! Movie Maker ! Movie Settings !
Trajectory (rather than rock-roll)

3. Estimate the diffusion constant using the Green-Kubo relationship,  

and your computed velocity autocorrelation function. How does this compare to your
estimate from the Einstein relation?

4. Use the vcorr2spectrum program to compute the power spectrum of the velocity
auto-correlation function,  

(Note that you could also do this by symmetrizing your velocity autocorrelation function
around t=0 and performing a discrete Fourier transform. xmgrace is a powerful tool for
doing tasks like this.)  
 
Plot the power spectrum, find the frequencies of any peaks you see, and assign these
peaks to particular features of the molecule.

 

�(�) =
� �

��
��v(t) · �v(0)�ei�tdt

D =
1
3

� �

0
��v(t) · �v(0)�dt

