Problem Set 4

These problems will concentrate entirely on the Harmonic oscillator.

- 1. Consider a one-dimensional harmonic oscillator of frequency ω and mass m.
 - a) Prove that the expectation value of any odd power of the position, \hat{x} , or the momentum, \hat{p} is zero. Discuss the reason for your answer.
 - b) Obtain the expectation values of \hat{x}^2 and \hat{x}^4 in any state. Is there any relation between the two of them?
- 2. Use operator methods in order to obtain the probability amplitudes $\langle p|0\rangle$ where $|p\rangle$ is an eigenstate of momentum. Use superposition to show how $\langle p|0\rangle$ (also known as $\psi_0(p)$) is related to $\langle x|n\rangle$ (also known as $\psi_n(x)$).
- 3. The harmonic oscillator is a rough approximation to the vibrations of a diatomic molecule if we choose the mass m to be the reduced mass for the diatomic:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{1}$$

where m_1 and m_2 are the masses of the two atoms in the diatomic. Compare the total probability of H_2 in the region where it is classically forbidden when it is in its ground vibrational state with that of T_2 in its ground state. Discuss your answer.

4. This clever problem has been stolen from Sakurai: Consider a particle of mass *m* subject to a one-dimensional potential of the following form:

$$V(x) = \begin{cases} \frac{1}{2}kx^2 & \text{for } x > 0\\ \infty & \text{for } x < 0 \end{cases}$$
(2)

Use what you have learned about both the ordinary harmonic oscillator and the particle-ina-box boundary conditions to answer the following questions:

- a) What is the ground state energy?
- b) What is the expectation value of $\langle x^2 \rangle$ for the ground state?
- c) Relate your answers to those of an equivalent harmonic oscillator that is symmetric around x = 0.

5. A simple potential function which models many of the properties of diatomic molecules is the *Morse potential*,

$$V(x) = D_e \left(1 - e^{-\beta x}\right)^2 \tag{3}$$

where x is the displacement of the bond from its equilibrium position and D_e is the value of V(x) at large separations. Expand V(x) in a Taylor series about x = 0 to obtain

$$V(x) = D_e \beta^2 x^2 - D_e \beta^3 x^3 + \cdots$$
(4)

Given that $D_e = 7.31 \times 10^{-19} \text{ J} \cdot \text{molecule}^{-1}$ and $\beta = 1.82 \times 10^{10} \text{ m}^{-1}$ for HCl, calculate the force constant of HCl. Plot the Morse potential for HCl and plot the corresponding harmonic oscillator potential on the same graph.

- 6. Consider a harmonic oscillator that is operating under classical mechanics. The probability (P(x)dx) of being found between x and x + dx is proportional to 1/v(x) where v(x) is the velocity at point x. Suppose our classical harmonic oscillator is given the same total energy as the ground state of the quantum harmonic oscillator, $E = \hbar \omega/2$.
 - a) Where are the classical turning points at this energy?
 - b) Derive the expression for v(x) between the classical turning points.
 - c) Plot on the same graph, the potential energy, the classical probability distribution, and the quantum probability distribution, $|\psi_0(x)|^2$. Compare your graph to Liboff's figure 7.11. Discuss your findings.
- 7. Use what you've done in problems 1 and 2 as well as the creation and annihilation operator methods to derive the uncertainty product $\sigma_x \sigma_p$ for the harmonic oscillator.