
Chemistry 60649 Fall 2008
Professor J. Daniel Gezelter Due Wednesday 12/10/08

Computational Problem Set

This problem set contains four “difficult” problems each of which will require you to write a
computer program or use a symbolic manipulation package like Mathematica. You are required to
do one of these problems. If you do more than one of these problems you will receive extra credit.
You may work together with other people in the class but the aggregated groups must still turn in
the answers to at least one different problem per person.

A complete solution to one of these problems will require that you submit:

1. computerized plots of the data (if a plot is required)

2. the source code to any program you wrote to solve the problem

3. the URL for a web page that outlines the steps you took to solve the problem and which
provides links to the code and images of any plots you produced

If you are having trouble getting started on all of these, please come talk to me. These prob-
lems are hard, so don’t leave them for the last minute!

1. Calculate and plot the transmission probability as a function of energy for the piecewise-
flat M-shaped barrier shown in the picture below. You only need to do the range between
0 and V0 (although going higher is also interesting). Specifically, consider the case where
V0 = 5h2

2ma2 and where b = 2a How do the energies of the tunnelling resonances relate to the
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energies of a particle in a box with infinite walls at −a and a? (Hint: Construct the boundary
matching equations as a matrix problem

A · x = b

where x is a vector of the amplitudes of the parts of the wavefunction, b is a vector containing
only unit incoming flux, and the matrix A maps the coefficients in one region to the adjacent
regions. Invert this equation (using Mathematica) to obtain the outgoing flux.)

Interpret your results!
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2. Consider a Harmonic oscillator that is in thermal contact with the rest of the universe, and
which has come into thermal equilibrium. This is a magical harmonic oscillator which has
only 6 energy eigenstates that may be populated. Those states are |0〉, |1〉, |2〉, |3〉, |4〉, and
|5〉

(a) Compute the density matrix in the basis set of these six energy eigenstates.

(b) Compute and plot 〈x2〉 as a function of temperature using this density matrix.

(c) Plot 〈x|ρ|x〉 when kT = 0.2h̄ω, when kT = h̄ω, and when kT = 5h̄ω.

Interpret your results!

3. One very common technique for obtaining eigenvalues and eigenvectors in linear algebra is
matrix diagonalization. If we want to find the eigenvalues {αk} and eigenfunctions {|k〉} of
any Hermitian operator Â,

Â|k〉 = αk|k〉

we can formulate it as a matrix-diagonalization problem.

Here’s how: If we choose a complete, orthonormal basis set {|n〉} and expand the eigen-
functions as

|k〉 =
∑
n

|n〉〈n|k〉 =
∑
n

c(k)
n |n〉

then the eigenvalues of a matrix A whose elements are [A]nn′ = 〈n|Â|n′〉 are the same as the
eigenvalues of operator Â, and the elements of the eigenvectors of A are just the coefficients
for the eigenfunctions {|k〉} in a basis set composed of the |n〉 functions.

That is, once we cast our operator in the form of a Matrix, we can use the tools from linear
algebra to obtain the eigenvalues and eigenvectors. In this problem you will need to write a
computer program to diagonalize a matrix and obtain the eigenvalues and eigenvectors. The
problem centers on the energy levels of the Morse oscillator,

V (r) = De

(
1− e−β(r−re)

)
.

This potential function has a Dissociation energy De, which is the difference between the
minimum of the curve at re and the asymptotic energy at r →∞. In a previous problem set,
you showed that

Deβ
2 =

k

2

where k is the force constant of a Harmonic oscillator that closely matches the lower part of
the curve,

Vharmonic(r) =
k

2
(r − re)

2 (1)

The Morse oscillator is actually a solvable problem, and the exact energies are known (see
Flüge’s QM book or look in Karplus & Porter).
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What you will do in this problem is to pick the lowest 10 eigenstates {|n〉} of the harmonic
oscillator characterized by the potential in Eq. (1). Write the Hamiltonian for the Morse
oscillator as a matrix in the basis set of Harmonic Oscillator states.

Construct a computer program that calculates the integrals for the matrix elements. Your
program should also build a 10× 10 Hamiltonian matrix for the Morse oscillator and diago-
nalize this matrix to give the eigenvalues. Compare your numerical eigenvalues to the exact
eigenvalues.

4. In this problem, we will perform a real variational principle calculation to find the ground
state energy of Helium using a set of Double-Zeta Slater-type Orbitals (STOs),

φ1si
=

(
ζ3
i

π

)1/2

e−ζir =
√

4ζ3
i e

−ζirY 0
0 i = 1, 2

as our trial functions. Here r refers to the radial coordinate between one of the electrons and
the nucleus. To do this problem, you’ll need to verify that the one electron integrals can be
written:

S12 = 〈φ1s1|φ1s2〉 =
8ζ

3/2
1 ζ

3/2
2

(ζ1 + ζ2)3

h12 = 〈φ1s1| −
∇2

2
− 2

r
|φ1s2〉 =

4ζ
3/2
1 ζ

3/2
2

(ζ1 + ζ2)3

(
2− ζ1ζ2

ζ1 + ζ1

)

The two electron integrals are somewhat more difficult. To carry out these integrals you’ll
need the following identity:

1

r12
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

rl
<

rl+1
>

Y ∗
lm(θ1, φ1)Ylm(θ2, φ2)

where r< means the smaller of r1 and r2 and r> means the larger.

In general, the two-electron integrals can be written:

(µν|λσ) =
∫ π
0 sin θ1dθ1

∫ π
0 sin θ2dθ2

∫ 2π
0 dφ1

∫ 2π
0 dφ2×∫∞

0 r2
1dr1

∫∞
0 r2

2dr2φ
∗
1sµ

(r1)φ
∗
1sν

(r1)
1

r12
φ∗1sλ

(r2)φ
∗
1sσ

(r2)

You may use the following derived expressions for the two-electron integrals (although you
should verify at least one of them):

(11|11) =
5

8
ζ1
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(11|22) =
ζ3
1ζ2(ζ1 + 4ζ2) + ζ1ζ

3
2 (ζ2 + 4ζ1)

(ζ1 + ζ2)4

(12|12) =
20ζ3

1ζ
3
2

(ζ1 + ζ2)5

(11|12) =
16ζ

9/2
1 ζ

3/2
2

(3ζ1 + ζ2)4

[
12ζ1 + 8ζ2
(ζ1 + ζ2)2

+
9ζ1 + ζ2

2ζ2
1

]

Evaluate the integrals above together with h22, h11, (22|21) and (22|22) when ζ1 = 1.45 and
ζ2 = 2.91.

Perform a variational calculation of the total energy of He+ by using a double-zeta Slater
basis function with these two values for ζ . The trial function is thus written as

ψ1s =
2∑

i=1

ciφ1si

where {φ1s1 , φ1s2} are the two Slater-type orbitals. Write a program that determines the min-
imum ground-state total energy obtained by varying c1 and c2. Comment on the discrepancy
between the calculated and exact total energy.

Now, do the same for the Helium atom with both electrons.
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