Chemistry 40642/60642 Spring 2016
Professor J. Daniel Gezelter Due Friday 4/1/2016

Problem Set 3
In class, we stated that the self-correlation function Fy(r,t) for an ideal gas is
Fy(r,t) = c(t)e Pmr /e (1)

where ¢(t) is the normalization constant. In this problem set, you will derive this result, making
use of Fourier transforms.

For any function f(7), where 7 is a position in three dimensional space, we can define the
Fourier transform,
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where k is a wave vector.
There is a Fourier representation of Dirac’s delta function,
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so we can show an inverse transform back to real space,
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Now, on to the problems:

1. Start from the definition of the self-correlation function that we talked about in class (not the
ideal result) and show that the Fourier transform of F(r,t) is

Ey(k 1) = (eFOcEn®) 5)
2. For an isotropic fluid, Fi(7,t) is dependent only on the length » = |]. Show that this fact
implies o R .
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3. For the ideal gas, 7 (t) = 71 (0) + U1t. As a result,
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Use this formula together with the fact that the velocity distributions of a classical equili-
brated system are Gaussian to show that
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4. Perform the inverse Fourier transform of the formula derived in Part 3 to determine F(r,t)
for the ideal gas.

5. Consider a fluid of interacting particles, and assume that for such a system, 7 (t) — 71 (0) is
a Gaussian random variable. With that assumption, show that

Fu(k,t) = exp |~K*R2(t)/6] (10)

where

R*(t) = (|7 () — 7 (0)%) (11)



