
Chemistry 60641 Fall 2014
Professor J. Daniel Gezelter Due Wednesday, September 10, 2014

Problem Set 1

1. Start by writing down the total Lagrangian for N independent harmonic oscillators
that have the following total potential energy:

V (q) =
1

2

∑
i

kiq
2
i .

Using the total Lagrangian, derive the N Lagrangian equations of motion to get dif-
ferential equations for q̈i. (Hint: the equations of motion are all identical).

Solve these equations of motion assuming the initial velocities are vi and the initial
positions xi.

2. A system has the total Lagrangian

L = aq̇21 + b
q̇2
q1

+ cq̇1q̇2 + fq21 q̇1q3 + gq̇2 − k
√
q21 + q22

Find expressions for the conjugate momenta, p1, p2, and p3. Derive the Hamiltonian
for this system. If you have done it correctly, your expression for the Hamiltonian
should be expressed only in terms of the position variables and their conjugate mo-
menta (and a few constants).

3. A one-dimensional simple harmonic oscillator is described by a Hamiltonian

H =
p2

2m
+

1

2
mω2q2

Thus, the phase space has 2-dimensions consisting only of the momentum p and the
coordinate q.

a. Sketch the constant energy curves in this two-dimensional space correspond-
ing to the condition H = E for different values of E.

b. Derive Hamilton’s equations for this sytem.

c. Solve the equations p(t) and q(t) subject to the general initial condition p(0) =
p0, q(0) = q0. There are a couple of ways of doing this, and to get yourself
comfortable using matrices, you might want to do this part using two coupled
linear equations in matrix-vector form.

d. By explicitly substituting the solutions back into the expression for the Hamil-
tonian, show that energy is conserved, i.e., that

H(p(t), q(t)) = H(p(0), q(0))
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e. Next, consider the change of variables:

q =

√
2J

mω
sin θ

p =
√
2mωJ cos θ

where J and θ are called the action and angle variables, respectively. Derive the
new harmonic oscillator Hamiltonian in terms of J and θ.

f. Sketch the constant energy curves in the J − θ phase space.

g. Derive Hamilton’s equations for these new variables and solve for the motion
of the system in terms of J and θ, and explain how the phase space of part f is
mapped onto the phase space of part a.

4. Consider a triatomic model for Ozone that lives in Lineland (i.e. a one-dimensional
world): That is, there are three identical masses (all with massm) that each have one

m m m

x1 x2 x3

coordinate (x1, x2, and x3) to describe their positions.

a. Write down an expression for the kinetic energy in terms of the momenta of
the three particles, T (p1, p2, p3)

b. Harmonic bonds between atoms are usually described in terms of a spring con-
stant k and an equilibrium bond distance r0. For two bound atoms at a distance
r from each other, the bond potential would be:

V (r) =
1

2
k (r − r0)2

Write down an expression for the total potential energy for the triatomic molecule
in terms of the atomic positions, V (x1, x2, x3).

c. The problem of the linear triatomic molecule can be reduced to one of two
degrees of freedom by introducing coordinates u = x2−x1−r0, v = x3−x2−r0,
and eliminating x2 by requiring that the center of mass (w = (x1 + x2 + x3)/3)
remain at rest. Make these substitutions and rewrite both the potential and
kinetic energies.
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d. Can you find a different set of coordinates that would allow you to rewrite the
Hamiltonian as a sum of two uncoupled harmonic oscillators?

5. Extra Credit: Develop a perturbation theory to study the action-angle variables of
the Henon-Heiles problem,

H =
1

2

(
p21 + p22 + q21 + q22

)
+ q1q

2
2 −

1

3
q31

Begin by using the normal canonical transformation for Harmonic oscillator action-
angle variables and write H in the form,

H = H0(J1, J2) + gV (J1, J2, O1, O2)

Assuming gV is small, find the new action-angle variables to first order in g. Ex-
plain the conditions under which the perturbation theory fails and relate this to the
ergodic behavior of the system.
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